2nd Asia-Pacific EPR/ESR Symposium ## PROCEEDINGS (ABSTRACT) Zhejiang University October 31-November 4, 1999 Hangzhou China ## CONDUCTION ESR AND $\alpha \leftrightarrow \beta$ PHASE TRANSFORMATIONS IN GRAPHITE INTERCALATION COMPOUNDS WITH NITRIC ACID ## Nikolay M. MISHCHENKO and Albert M. ZIATDINOV Institute of Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 690022, Vladivostok, RUSSIA. E-mail: chemi@online.ru The graphite intercalation compound (GIC) with nitric acid exists in two forms. When the ordinary form, α -C_{5n}HNO₃, is exposed to air or N₂ gas for an extended time period, the HNO₃ molecules, which stand essentially perpendicular to the graphite planes, reorient to lie nearly parallel, yielding the more dilute β -C_{8n}HNO₃ residue compound. Because synthesis of the residue compound is difficult and time consuming, most studies of HNO₃-GIC's have been confined to the α -type. In present work the results of Conduction ESR (CESR) and electroconductivity studies of $\alpha\square\beta$ phase transformations in HNO₃-GIC's are presented. Figure 1. CESR line asymmetry parameter A/B (1) of β -C₂₀HNO₃ vers. sample width (/). Figure 2. σ_e (1) and ΔH (2) of α -C₁₀HNO₃ vers exposure time instr. At $\alpha\Box\beta$ phase transformation of $C_{10}HNO_3$ the electroconductivity in basal plane (σ_a) monotonically decreases from 2.9 • 10⁵ (Ω • cm)⁻¹ to 0.1 • 10⁵ (Ω • cm)⁻¹ (Fig. 2). Herewith, changing a CESR linewidth does not correlated with change σ_a (Fig. 2). At reintercalation of $\beta C_{24}HNO_3$ the value of σ_a - conductivity does not change. The value of electroconductivity along the c-axis (σ_c) practically does not depend on HNO₃-GIC's modification. In all studied GIC phases at decreasing of temperature a CESR linewidth increases together with σ_a . This work was supported by the Russian Foundation for Basic Research (NQ 97-03-33346a).