ФИЗИКА ТВЕРДОГО ТЕЛА

ТОМ 16

ОТДЕЛЬНЫЙ ОТТИСК

ИЗДАТЕЛЬСТВО "НАУКА"
ЛЕНИНГРАДСКОЕ ОТДЕЛЕНИЕ
ЛЕНИНГРАД 1974
На рис. 2 приведены ЭС для Be, Mg, Ca, Sr, Ba и W, полученные при $E_p=50$ эв. Заметные особенности, наблюдаемые на ЭС, можно объяснить Оже-переходами. Энергетическое положение атомных уровней $E_A$ (отсчитанное от уровня Ферми) [4] и соответствующих Оже-пиких $E_2$ приведены в таблице. Видно, что все наблюдаемые Оже-пики соответствуют процессу $iVV$ [6], при этом энергия $E_2$ приблизительно равна разности $E_A$ работы выхода и $\varepsilon$. Оже-пики такого типа для Be и Mg приходятся на область больших энергий $E_2$ [6, 7].

<table>
<thead>
<tr>
<th>Элемент</th>
<th>$E_2$, эв</th>
<th>Атомные уровни</th>
<th>$E_A$, эв</th>
<th>$\varepsilon$, эв</th>
<th>Оже-переход</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca</td>
<td>22.2</td>
<td>$M_2, M_3$</td>
<td>25.4</td>
<td>3.0</td>
<td>$M_{2,3}VV$</td>
</tr>
<tr>
<td>Sr</td>
<td>17.5</td>
<td>$N_2, N_3$</td>
<td>19.9</td>
<td>2.5</td>
<td>$N_{2,3}VV$</td>
</tr>
<tr>
<td>Ba</td>
<td>12.3, 40</td>
<td>$O_2, O_3$</td>
<td>14.6, 16.6, 38.1</td>
<td>2.5</td>
<td>$O_{2,3}VV, O_1VV$</td>
</tr>
</tbody>
</table>

Литература


Лениградский государственный
педагогический институт
им. А. И. Герцена
Поступило в Редакцию
29 мая 1974 г.

ЭПР ИОНОВ Cu$^{2+}$ И V$^{4+}$ В H-ФОРМЕ Nb$_2$O$_5$

В. С. Грушин, В. А. Иоффе, И. Б. Патрикеев,
П. М. Рахманюлов, Д. К. Торопов, А. М. Зиатдинов

Nb$_2$O$_5$ кристаллизуется в большом числе различных структурных модификаций, поэтому является удобным объектом для исследования электронного строения различных структурных типов одного и того же вещества. Нами уже исследовались спектры ЭПР ионов V$^{4+}$ в низкотемпературной B-форме Nb$_2$O$_5$ [4]. В настоящей статье мы сообщаем об исследовании спектров ЭПР ионов Cu$^{2+}$ (3d$^9$) и V$^{4+}$ (3d$^3$) в высокотемпературной H-форме Nb$_2$O$_5$. 

3474
Структура H-Nb₂O₅ описывается пространственной группой P 2₁, угол моноклинности β=120° [1]. Она построена из блоков октаэдров типа ReO₃ двух различных размеров (3 × 4, 3×5). При соединении этих блоков образуются тетраэдрические пустоты, наполненные заполненные атомами Nb. Элементарная ячейка содержит 14 формульных единиц Nb₂O₅, 27 атомов Nb имеют октаэдрическую координацию и один — тетраэдрическую.

Монокристаллы H-Nb₂O₅ с примесями меди и ванадия (0.5% по синтезу) получены методом Вернекля.

Спектры ЭПР исследовались на спектромеetre JES-ME-3 (100 кГц), T ≈ 3.2 см при T ≈ 300° К.

Спектр иона Cu²⁺ в H-Nb₂O₅ описывается спин-гамильтонианом осевой симметрии с константами

\[ S = \frac{1}{2}, \quad I = \frac{3}{2}, \]

\[ g_x = 2.174, \quad A = 195 \cdot 10^{-4} \text{ см}^{-1}, \]

\[ g_y = 2.046, \quad B = 24 \cdot 10^{-4} \text{ см}^{-1}, \]

ось y направлена вдоль моноклинной оси b, линии отдельных изотопов меди не разрешаются. Волновая функция основного состояния [2] имеет вид

\[ 0.999 |x^2 - y^2| + 0.020 |xy| + 0.024 |xz| + 0.024 |yz|. \]

В табличке приведены параметры \( P = 2g_x \beta_s x \times (\tau - 1) \) и константы спин-орбитальной связи \( \lambda_{xy} \) иона Cu²⁺ в H-Nb₂O₅, а также положение уровней верхнего тринплета; оценка проводилась по обычным формулам теории возмущений во втором порядке [4].

Спектр ЭПР монокристаллов H-Nb₂O₅ с примесями ванадия состоит из двух сигналов, налагающихся друг на друга. Первый, с хорошо разрешенной СТС из восьми линий, описывается спин-гамильтонианом ромбической симметрии с константами

\[ S = \frac{1}{2}, \quad I = \frac{7}{2}, \]

\[ g_x = 1.918, \quad A_x = 160.4 \cdot 10^{-4} \text{ см}^{-1}, \]

\[ g_y = 1.965, \quad A_y = 56.9 \cdot 10^{-4} \text{ см}^{-1}, \]

\[ g_z = 1.971, \quad A_y = 52.5 \cdot 10^{-4} \text{ см}^{-1}, \]

ось z совпадает с моноклинной осью b. Установить ориентацию двух других осей относительно кристаллографических не удалось из-за плохой огранки кристаллов.

Расчет волновой функции основного состояния по формулам [5] приводит к виду

\[ 0.965 |x^2 - y^2| + 0.020 |3z^2 - r^2| - 0.020 |xy + 0.017 |yz| - 0.014 |zx|. \]

Константы \( x, P, \lambda_{xy}, E_x \) для иона V⁴⁺ в H-Nb₂O₅ также приведены в таблице.

<table>
<thead>
<tr>
<th>( H-Nb₂O₅: Cu²⁺ )</th>
<th>( H-Nb₂O₅: V⁴⁺ )</th>
</tr>
</thead>
<tbody>
<tr>
<td>( x )</td>
<td>( P )</td>
</tr>
<tr>
<td>( 0.33 )</td>
<td>( 276 \cdot 10^{-4} )</td>
</tr>
<tr>
<td>( E_{xy} \approx 27 \text{ 000} )</td>
<td></td>
</tr>
<tr>
<td>( E_{xy} \approx 15 \text{ 000} )</td>
<td></td>
</tr>
<tr>
<td>( E_{xy} \approx 11 \text{ 700} )</td>
<td></td>
</tr>
<tr>
<td>( E_{xy} \approx 9 \text{ 800} )</td>
<td></td>
</tr>
</tbody>
</table>
Описанный выше сигнал налагается на широкую линию со слабой угловой зависимостью и плохо разрешенной СТС. В образцах с малым содержанием ванадия (10⁻⁹—10⁻⁴ вес.%) по данным спектрального анализа наблюдается только спектр второго типа. Это позволило установить, что он характерен для иона V⁺⁺⁺⁺ в сильно разупорядоченном окружении. Из-за малой интенсивности спектра его константы не определялись.

Как следует из структурных данных, для ионов примеси в H-Nb₂O₅ имеются два положения замещения — в октаэдре и в тетраэдре. Кроме того, структура содержит тетраэдрические пустоты, а также каналы квадратного сечения, втянутые вдоль моноклинной оси.

Согласно [2], октаэдрические положения Nb в структуре H-Nb₂O₅ сильно различаются по величине и направлению связей Me—O. Так, например, длина кратчайшей связи Nb—O октаэдра меняется в элементарной ячейке от 1.73 до 1.92 Å, а направление этой связи для разных октаэдров ячейки — в пределах 90°. Очевидно, что если парамагнитные примесные ионы замещают Nb в октаэдрах, их спектр будет близок к спектру в разупорядоченной среде. Мы полагаем поэтому, что спектр второго типа в образцах H-Nb₂O₅ с примесью ванадия обусловлен ионами V⁺⁺⁺⁺ в октаэдрических позициях. Для ионов V⁺⁺⁺⁺, дающих спектр с хорошо разрешенной СТС, равновероятно как тетраэдрическое, так и восьмерное кислородное окружение, так как и в том и другом случаях низким орбитальным уровнем для состояния D₃d является d₃z², a константы спектра удовлетворяют соотношению: e₄ < e₃, A > B, что мы и наблюдаем на опыте.

Соотношение между константами спектра Cu⁺⁺⁺⁺ в H-Nb₂O₅, сильно осевое поле в месте нахождения иона Cu⁺⁺⁺⁺ и волновая функция основного состояния характерны для окружения типа сильно вытянутого октаэдра, поэтому мы полагаем, что ионы Cu⁺⁺⁺⁺ находятся в каналах структуры и имеют кислородное окружение в виде плоского квадрата, что характерно для структурного положения примесных ионов Cu⁺⁺⁺⁺ в целом ряде соединений.

Литература


Институт химии силикатов им. И. В. Гребенищевой АН СССР
Ленинград

Поступило в Редакцию 6 июня 1974 г.

ФЕРМИ-РЕЗОНАНС И ДВУХЧАСТИЧНЫЕ ВОЗБУЖДЕНИЯ В КРИСТАЛЛЕ ЦИКЛОГЕКСАНА

Г. Н. Жижин, Е. Б. Перминов

Ряд эффектов в спектрах ИК поглощения является следствием ангармонизма внутри- и межмолекулярных колебаний вещества. В этой статье мы рассматриваем Ферми-резонанс и двухчастичные кристаллические состояния.

В спектре ИК поглощения жидкого и кристаллического циклогексана наблюдаются две полосы примерно равной интенсивности с частотами 1019 и 1042 см⁻¹. Многие авторы [1, 2] относят их к компонентам Ферми-резо-